Abstract
The traditional "trap and emulate" I/O paravirtualization model conveniently allows for I/O interposition, yet it inherently incurs costly guest-host context switches. The newer "sidecore" model eliminates this overhead by dedicating host (side)cores to poll the relevant guest memory regions and react accordingly without context switching. But the dedication of sidecores on each host might be wasteful when I/O activity is low, or it might not provide enough computational power when I/O activity is high. We propose to alleviate this problem at rack scale by consolidating the dedicated sidecores spread across several hosts onto one server. The hypervisor is then effectively split into two parts: the local hypervisor that hosts the VMs, and the remote hypervisor that processes their paravirtual I/O. We call this model vRIO---paraVirtual Remote I/O. We find that by increasing the latency somewhat, it provides comparable throughput with fewer sidecores and superior throughput with the same number of sidecores as compared to the state of the art. vRIO additionally constitutes a new, cost-effective way to consolidate I/O devices (on the remote hypervisor) while supporting efficient programmable I/O interposition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.