Abstract
In real and complex fields, unitary and paraunitary (PU) matrices have found many applications in signal processing. There has been interest in extending these ideas to the case of finite fields. We study the theory of PU filter banks (FBs) in GF(q) with q prime. Various properties of unitary and PU matrices in finite fields are studied. In particular, a number of factorization theorems are given. We show that (i) all unitary matrices in GF(q) are factorizable in terms of Householder-like matrices and permutation matrices, and (ii) the class of first-order PU matrices (the lapped orthogonal transform in finite fields) can always be expressed as a product of degree-one or degree-two building blocks. If q>2, we do not need degree-two building blocks. While many properties of PU matrices in finite fields are similar to those of PU matrices in complex field, there are a number of differences. For example, unlike the conventional PU systems, in finite fields, there are PU systems that are unfactorizable in terms of smaller building blocks. In fact, in the special case of 2/spl times/2 systems, all PU matrices that are factorizable in terms of degree-one building blocks are diagonal matrices. We derive results for both the cases of GF(2) and GF(Q) with q>2. Even though they share some similarities, there are many differences between these two cases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.