Abstract

Parathyroid hormone-related protein (PTHrP) is expressed by human prostatic tissues and cancer cell lines. PTHrP enhances tumor cell growth and metastasis in vivo and up-regulates proinvasive integrin alpha6beta4 expression in vitro. Hallmarks of malignant tumor cells include resistance to apoptosis and anchorage-independent cell growth. In this study, we used the human prostate cancer cell lines C4-2 and PC-3 as model systems to study the effects of PTHrP on these processes. We report that PTHrP protects these cells from doxorubicin-induced apoptosis and promotes anchorage-independent cell growth via an intracrine pathway. Conversely, autocrine/paracrine PTHrP action increases apoptosis in C4-2 cells and has no effect on apoptosis in PC-3 cells. The intracrine effects of PTHrP on apoptosis are mediated via activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. PTHrP also affects the phosphorylation state of Akt substrates implicated in apoptosis suppression, including glycogen synthase kinase-3 and Bad. The prosurvival effects of PTHrP are accompanied by increases in the ratio of antiapoptotic to proapoptotic members of the Bcl-2 family and in levels of c-myc. PTHrP also increases nuclear factor-kappaB activity via a PI3K-dependent pathway. Integrin alpha6beta4 is known to activate PI3K. Here, we also show that knockdown of integrin alpha6beta4 negates the PTHrP-mediated activation of the PI3K/Akt pathway. Taken together, these observations provide evidence of a link between PTHrP and the PI3K/Akt signaling pathway through integrin alpha6beta4, resulting in the activation of survival pathways. Targeting PTHrP production in prostate cancer may thus prove therapeutically beneficial.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call