Abstract

Parathyroid hormone-related protein (PTHrP) plays a significant role in various tumor types, including prostate cancer. However, its specific role and underlying mechanisms in prostate cancer remain unclear. This study investigates the role of PTHrP and its interaction with the c-Met in prostate cancer. PTHrP was overexpressed and knocked down in prostate cancer cell lines to determine its effect on cell functions. Xenograft tumor models were employed to assess the impact of PTHrP overexpression on tumor growth. To delve into the interaction between PTHrP and c-Met, rescue experiments were conducted. Clinical data and tissue samples from prostate cancer patients were gathered and analyzed for PTHrP and c-Met expression. PTHrP overexpression in prostate cancer cells upregulates c-Met expression and augments cell functions. In contrast, PTHrP-knockdown diminishes c-Met expression and inhibits cell functions. In vivo experiments further demonstrated that PTHrP overexpression promoted tumor growth in xenograft models.Moreover, modulating c-Met expression in rescue experiments led to concurrent alterations in prostate cancer cell functions. Immunohistochemical analysis of clinical samples displayed a significant positive correlation between PTHrP and c-Met expression. Additionally, PTHrP expression correlated with clinical parameters like prostate-specific antigen (PSA) levels, tumor stage, lymph node involvement, distant metastasis, and Gleason score. PTHrP plays a crucial role in prostate cancer progression by upregulating c-Met expression. These insights point to PTHrP as a promising potential biomarker for prostate cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.