Abstract

Effects of increased bone resorption on release of insulin-like growth factor-I (IGF-I) and IGF-II into the osteoblast microenvironment were investigated using neonatal mouse calvaria organ cultures. Release of these growth factors from calvaria into serum-free medium was quantitated using a human IGF-I RIA and human IGF-II RRA. Untreated calvaria released several-fold more IGF-II than IGF-I. PTH (from 1-12 nM) stimulated a dose-dependent increase in the release of both growth factors that correlated with increased calcium release and was sustained for up to 6 days. IGF-I and IGF-II release were maximally stimulated 5- to 10-fold and 1.5- to 2-fold, respectively, compared to untreated control values. Calcitonin inhibited PTH-stimulated resorption, but had no effect on PTH stimulation of IGF-I and IGF-II release, suggesting that PTH effects on IGF-I and IGF-II release were not dependent on resorption. Furthermore, the amounts of IGF-I and IGF-II released from calvaria during 6 days of culture were 5-fold more than the amounts of IGF-I and IGF-II present in the calvaria (bone plus cells) at the beginning of culture, suggesting that much of the IGF-I and IGF-II released was newly produced by calvaria cells. The results suggest that PTH directly stimulated calvarial osteoblasts to release IGF-I and IGF-II. Since IGF-I and IGF-II stimulate osteoblastic cell proliferation, the effect of PTH on the release of these and other growth factors may mediate coupling of bone formation to bone resorption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.