Abstract

Parathyroid hormone related peptide (PTHrP), first identified in tumors from patients with the syndrome of "Humoral Hypercalcemia of Malignancy," can replace parathyroid hormone (PTH) in activating the PTH-receptor in responsive cells. Although PTHrP expression is widespread in various adult and fetal tissues, its normal biological function is as yet unknown. We have examined the possible role of PTHrP and the PTH/PTHrP-receptor in early mouse embryo development. Using F9 embryonal carcinoma (EC) cells and ES-5 embryonic stem (ES) cells as in vitro models, we demonstrate that during the differentiation of these cells towards primitive and parietal endoderm-like phenotypes, PTH/PTHrP-receptor mRNA is induced. This phenomenon is correlated with the appearance of functional adenylate cyclase coupled PTH/PTHrP-receptors. These receptors are the mouse homologues of the recently cloned rat bone and opossum kidney PTH/PTHrP-receptors. Addition of exogenous PTH or PTHrP to RA-treated EC or ES cells is an efficient replacement for dBcAMP in inducing full parietal endoderm differentiation. Endogenous PTHrP is detectable at very low levels in undifferentiated EC and ES cells, and is upregulated in their primitive and parietal endoderm-like derivatives as assessed by immunofluorescence. Using confocal laser scanning microscopy on preimplantation mouse embryos, PTHrP is detected from the late morula stage onwards in developing trophectoderm cells, but not in inner cell mass cells. In blastocyst stages PTHrP is in addition found in the first endoderm derivatives of the inner cell mass. Together these results indicate that the PTH/PTHrP-receptor signalling system serves as a para- or autocrine mechanism for parietal endoderm differentiation in the early mouse embryo, thus constituting the earliest hormone receptor system involved in embryogenesis defined to date.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.