Abstract
Parathyroid hormone (PTH) is secreted by the chief cells of the parathyroid gland in response to changes in ionized calcium (Ca(2+)) concentrations. In this study, we measured PTH secretion, and PTH mRNA and calcium-sensing receptor (CaR) mRNA expression by equine parathyroid chief cells in vitro. We also evaluated the effects of interleukin (IL)-1beta, IL-6, and tumor necrosis factor (TNF)-alpha on PTH secretion, and PTH and CaR mRNA expression. The relationship between PTH and Ca(2+) was inversely related. PTH secretion decreased from 100% (day 0) to 13% (day 30). PTH mRNA expression declined from 100% (day 0) to 25% (day 30). CaR mRNA decreased from 100% (day 0) to 16% (day 30). Chief cells exposed to high (2.0 mM) Ca(2+) concentrations had a lower PTH mRNA expression compared with low Ca(2+) concentrations. Ca(2+) concentrations had no effect on CaR mRNA expression. The inhibitory effect of high Ca(2+) concentrations on PTH secretion also declined over time. After day 10, there was no significant difference in PTH secretion between low and high Ca(2+ )concentrations. IL-1beta decreased both PTH secretion (75%) and PTH mRNA expression (73%), and resulted in a significant overexpression of CaR mRNA (up to 142%). The effects of IL-1beta were blocked by an IL-1 receptor antagonist. IL-1beta decreased the Ca(2+) set-point from 1.4 mM to 1.2 mM. IL-6 decreased PTH secretion (74%), but had no effect on PTH and CaR mRNA expression. TNF-alpha had no effect on PTH secretion, and PTH and CaR mRNA expression. In summary, the decreased responsiveness of parathyroid cells to Ca(2+) from 0 to 30 days can be explained, in part, by the reduced CaR expression. IL-1beta and IL-6 but not TNF-alpha affected parathyroid function in vitro and may be important in influencing PTH secretion in the septic horse.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.