Abstract

Parathyroid hormone (PTH) and prostaglandin E2 (PGE2) are physiological agonists which stimulate bone cells to resorb bone, a process by which the mineralized extracellular bone matrix is dissolved. Bone resorption has a key role in the maintenance of plasma calcium levels. It has been established that both PTH and PGE2 activate adenylate cyclase in osteoblasts, but it is apparent that (1) the two agents have qualitatively different effects on osteoblasts, and (2) the generation of cyclic AMP cannot account for all the effects of PTH on bone cell metabolism. Others have demonstrated that PTH and PGE2 may also elevate intracellular calcium levels, but the mechanism by which this is achieved has not been fully defined. Here we have investigated the effects of PTH on neonatal mouse osteoblasts in culture and shown that physiological concentrations of the hormone (50 nM) caused a small increase (22%) in total inositol phosphates accumulation, with a larger increase (40%) in inositol trisphosphate. We found that this activation occurred at lower concentration than was necessary to activate adenylate cyclase. PGE2 was a more effective activator of inositol phosphates accumulation than PTH, causing up to 300% increase in the total inositol phosphates after 30 min. Both PTH and PGE2 stimulated cyclic AMP accumulation, but the activation of adenylate cyclase by forskolin did not enhance inositol phosphates production. We conclude that both PTH and PGE2 stimulate phosphoinositide turnover in mouse osteoblasts and suggest that this mechanism may contribute to their elevation of intracellular calcium in bone cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call