Abstract

How does diversity in nature come about? One factor contributing to this diversity are species interactions; diversity on one trophic level can shape diversity on lower or higher trophic levels. For example, parasite diversity enhances host immune diversity. Insect protective symbionts mediate host resistance and are, therefore, also engaged in reciprocal selection with their host's parasites. Here, we applied experimental evolution in a well-known symbiont-aphid-parasitoid system to study whether parasitoid diversity contributes to maintaining symbiont genetic diversity. We used caged populations of black bean aphids (Aphis fabae), containing uninfected individuals and individuals infected with different strains of the bacterial endosymbiont Hamiltonella defensa, which protects aphids against parasitoids. Over multiple generations, these populations were exposed to three different species of parasitoid wasps (Aphidius colemani, Binodoxys acalephae or Lysiphlebus fabarum), simultaneous or sequential mixtures of these species or no wasps. Surprisingly, we observed little selection for H. defensa in most treatments, even when it clearly provided protection against a fatal parasitoid infection. This seemed to be caused by high induced costs of resistance: aphids surviving parasitoid attacks suffered an extreme reduction in fitness. In marked contrast to previous studies looking at the effect of different genotypes of a single parasitoid species, we found little evidence for a diversifying effect of multiple parasitoid species on symbiont diversity in hosts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call