Abstract
Microcin E492 (MccE492) is an antibacterial peptide naturally secreted by Klebsiella pneumoniae RYC492. Initially described as an 84-residue unmodified peptide, it was also recently isolated in a posttranslationally modified form, MccE492m. The production of MccE492m is dependent on the synthesis of enterobactin and the mceABCDEFGHIJ gene cluster. The posttranslational modification was characterized as a trimer of N-(2,3-dihydroxybenzoyl)-L-serine (DHBS) linked to the Ser84-carboxylate via a beta-D-glucose moiety. MccE492m was shown to bind ferric ions through the trimer of DHBS. This is the first example of a novel type of antibacterial peptide termed siderophore-peptide. Recognition of MccE492m, but also of the unmodified MccE492, was shown to be mediated by the catecholate siderophore receptors FepA, Cir and Fiu at the outer membrane of E. coli. The siderophore-type modification was shown to be responsible for a significant enhancement of the microcin antibacterial activity. Therefore, we propose that MccE492 and MccE492m use iron-siderophore receptors for uptake into the target bacteria and that improvement of MccE492 antimicrobial activity upon modification results from an increase in the microcin/receptor affinity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.