Abstract
Parasites with complex life cycles, relying on trophic transmission to a definitive host, very often induce changes in the behaviour or appearance of their intermediate hosts. Because this usually makes the intermediate host vulnerable to predation by the definitive host, it is generally assumed that the parasite's transmission rate is increased, and that the modification of the host is, therefore, of great adaptive significance to the parasite. However, in the ecological “real world” other predators unsuitable as hosts may just as well take advantage of the facilitation process and significantly erode the benefit of host manipulation. Here we show that the intertidal New Zealand cockle ( Austrovenus stutchburyi), manipulated by its echinostome trematode ( Curtuteria australis) to rest on the sediment surface fully exposed to predation from the avian definitive host, is also subject to sublethal predation from a benthic feeding fish ( Notolabrus celidotus, Labridae). The fish is targeting only the cockle-foot, in which the parasite preferentially encysts, reducing the infection intensity of manipulated cockles to levels comparable with those in non-manipulated, buried cockles. Based on the frequency and intensity of the foot cropping and predation rates on surfaced cockles by avian hosts, it is estimated that 2.5% of the parasite population in manipulated cockles is transmitted successfully whereas 17.1% is lost to fish. We argue that the adaptive significance of manipulation in the present system depends critically on the feeding behaviour of the definitive host. If cockles constitute the majority of prey items, there will be selection against manipulation. If manipulated cockles are taken as an easily accessible supplement to a diet composed mostly of other prey organisms, behavioural manipulation of the cockle host appears a high risk, high profit transmission strategy. Both these feeding behaviours of birds are known to occur in the field.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.