Abstract

This paper reviews current knowledge regarding the metabolism of the sulphur-containing amino acids methionine and cysteine in parasitic protozoa and helminths. Particular emphasis is placed on the unusual aspects of parasite biochemistry which may present targets for rational design of anti-parasite drugs. In general, the basic pathways of sulphur amino acid metabolism in most parasites resemble those of their mammalian hosts, since the enzymes involved in (a) the methionine cycle and S-adenosylmethionine metabolism, (b) the trans-sulphuration sequence, (c) the transaminative catabolism of methionine, (d) the oxidative catabolism of cysteine and (e) glutathione synthesis have been demonstrated variously in several helminth and protozoan species. Despite these common pathways, there also exist numerous differences between parasite and mammalian metabolism. Some of these differences are relatively subtle. For example, the biochemical properties (and primary amino acid structures) of certain parasite methionine cycle enzymes and S-adenosylmethionine decarboxylases differ from those of the corresponding mammalian enzymes, and nematodes and trichomonads possess a novel, non-mammalian form of the trans-sulphuration enzyme cystathionine β-synthase. The most profound differences between parasite and mammalian biochemistry relate to a number of unusual enzymes and thiol metabolites found in parasitic protozoa. In certain protozoa the pathway for methionine recycling from 5′-methylthioadenosine differs markedly from the mammalian route, and involves 2 exclusively microbial enzymes. Trypanosomatid protozoa contain the non-mammalian antioxidant thiol compounds ovothiol A and trypanothione, together with unique trypanothionelinked enzymes. Specific anaerobic protozoa possess another exclusively microbial enzyme, methionine γ-lyase, which catabolises methionine (and homocysteine); the physiological significance of these non-mammalian activities is not fully understood. These unusual features offer opportunities for chemotherapeutic exploitation, and in some cases represent metabolic similarities with bacteria. Additionally, some anaerobic protozoa contain unidentified thiols and this implies the presence of further unusual enzymes/pathways in these organisms. So far, no truly unique targets for chemotherapy have been found in helminth sulphur amino acid metabolism, and to some degree this reflects the relative lack of detailed study in the area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.