Abstract

Living in a social group increases the risks of parasitism, especially in highly-related groups. In homogenous groups, with no reproductive division of labour, the impact of parasitism is unlikely to vary with host identity. Many social systems, however, do exhibit division of reproductive labour, most famously in social insects with their reproductive queens and generally infertile workers. In such systems, the impact of parasitism will differ for each group. Consequently, we predict that susceptibility to parasites will vary to reflect such differential impact. We tested this prediction using a trypanosome-bumble bee system, where Crithidia bombi infects both gynes and workers of Bombus terrestris. We studied both susceptibility to the parasite and relevant measures of the immune function. As predicted, gynes were significantly less susceptible to the parasite than workers, but while gynes and workers expressed different immune profiles, how these link to differential susceptibility remains unclear. In conclusion, our results suggest that differential selection pressures exerted by parasites may produce multiple phenotypes from a single genotype in order to maximise fitness in a social group context.Significance statementSocial insect colonies dominate terrestrial ecology, and as such are targets for parasites. How they defend themselves against such threats is a key question. Here, we show that bumble bee gynes — the reproductive individuals that overwinter and found colonies in this annual social system — are more resistant to a parasite that disproportionately affects reproductive fitness than their sister workers. Differential patterns of susceptibility may help to explain the success of these social insects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call