Abstract
Trophically transmitted parasites often infect an intermediate prey host and manipulate their behaviour to make predation more likely, thus facilitating parasite transmission to the definitive host. However, it is unclear when such a manipulation strategy should be expected to evolve. We develop the first evolutionary invasion model to explore the evolution of manipulation strategies that are in a trade-off with parasite production of free-living spores. We find that the size of the susceptible prey population together with the threat of predation drives manipulation evolution. We find that it is only when the susceptible prey population is large and the threat of predation is relatively small that selection favours manipulation strategies over spore production. We also confirm that the system exhibits cyclic population dynamics, and this can influence the qualitative direction of selection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.