Abstract

BackgroundBats belong to one of the most species-rich orders within the Mammalia. They show a worldwide distribution, a high degree of ecological diversification as well as a high diversity of associated parasites and pathogens. Despite their prominent and unique role, the knowledge of their parasite-host-relationships as well as the mechanisms of co-evolutionary processes are, partly due to strict conservation regulations, scarce.MethodsJuvenile specimens of the greater mouse-eared bat (Myotis myotis) from a roosting colony in Gladenbach (Hesse, Germany) were examined for their metazoan endo-and ectoparasite infections and pathogens. Morphometric data were recorded and the individuals were checked for Lyssavirus-specific antigen using a direct immunofluorescence test. For unambiguous species identification, the bats were analysed by cyt-b sequence comparison.ResultsMyotis myotis were parasitized by the six insect and arachnid ectoparasite species, i.e. Ixodes ricinus, Ischnopsyllus octactenus, Ichoronyssus scutatus, Steatonyssus periblepharus, Spinturnix myoti and Cimex dissimilis. Additionally, the nematode Molinostrongylus alatus and the cestode Vampirolepis balsaci were recorded. Each bat was parasitized by at least four species. The parasites showed partially extreme rates of infection, never recorded before, with more than 1,440 parasites per single host. Ichoronyssus scutatus, Steatonyssus periblepharus, Vampirolepis balsaci and Molinostrongylus alatus are recorded for the first time in Germany. A checklist for Europe is presented containing records of 98 parasite species of 14 Myotis species.ConclusionsThe Myotis myotis from Gladenbach (Hesse, Germany) were parasitized by a diverse parasite fauna with high infestation rates. We assume that in juvenile Myotis the number of parasites is generally higher than in adults due to only later acquired immune competence and behavioural adaptations. Our results revealed new insights into parasite fauna of M. myotis and European bats in general. The finding of endoparasitic cyclophyllidean cestodes that have a two-host lifecycle is, considering the stationary behaviour of the juvenile bats, rather unusual and suggests a non-predatory transmission mechanism (e.g. via autoinfection).A new insight gained from the collated literature was that the European wide composition of the Myotis parasite fauna is dominated by a few specific taxonomic groups in Europe.

Highlights

  • Bats belong to one of the most species-rich orders within the Mammalia

  • Morphometric data and species identification of Myotis myotis The sympatric sibling species Myotis myotis and M. blythii are difficult to distinguish based on morphological characters, especially as juveniles

  • 27 Myotis specimens could be sequenced successfully and Blast-analyses revealed 99-100% identity with a sequence of M. myotis from Romania (Acc.: GU817367.1), suggesting that our specimens belong to the same species

Read more

Summary

Introduction

Bats belong to one of the most species-rich orders within the Mammalia They show a worldwide distribution, a high degree of ecological diversification as well as a high diversity of associated parasites and pathogens. As the second largest order worldwide within the Mammalia [1] bats show a high degree of ecological diversification. This variability is enabled by morphological, behavioural and physiological adaptations [2]. The most common synanthropic species in Europe are Myotis daubentoni, M. dasycneme and M. myotis [8]. They live in close contact with humans and can act as vectors for several zoonotic pathogens. Long-term studies show that Eptesicus serotinus is the most common species in Germany with Lyssavirus infections [10], while only occasional reports of infection of M. myotis are known

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call