Abstract

Parasite dispersal theory draws heavily upon epidemiological SIR models in which host status (susceptible (S), infected (I), or recovered (R)) is used to study parasite dispersal evolution. In contrast to these extrinsically host-centric drivers, in this study we focus on an intrinsic driver, the parasite's reproductive value (predicted future offspring) as a regulator of the extent to which the individual will engage in risky dispersal behaviour. As a model system we use the honeybee Apis mellifera and its ectoparasite, the mite Varroa destructor. Mite reproduction happens exclusively inside cells of bee brood, and newly emerged fecund mites may parasitize either a homocolonial brood cell (low risk dispersal) or emigrate to a new bee colony via phoretic attachment to mature forager bees (high risk dispersal). In an empirical bioassay, prepartum mites (high reproductive value) and postpartum mites (low reproductive value) were offered a choice of newly emerged homocolonial worker bees (low risk), homocolonial pollen forager bees (high risk), or heterocolonial pollen foragers (high risk). A preference for newly emerged bees was earlier and more strongly sustained among prepartum mites. This suggests comparatively greater dispersal risk tolerance among postpartum mites with lower reproductive value. A dangerous bid for dispersal may be adaptive if the individual has already successfully reproduced and the rewards for successful dispersal are sufficiently large.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.