Abstract
According to the Red Queen hypothesis--which states that interactions among species (such as hosts and parasites) lead to constant natural selection for adaptation and counter-adaptation--the disproportionate evolutionary success of parasites on common host genotypes leads to correlated selection for sexual reproduction and local adaptation by the parasite population. Here we determined whether local adaptation is due to disproportionate infection of common host genotypes, and, if so, whether infection of common host genotypes is due to commonness per se, or some other aspect of these genotypes. In a reciprocal cross-inoculation experiment parasites occupying the same geographical area (sympatric) infected locally common host genotypes significantly more often than rare host genotypes, whereas parasites occupying separate geographical areas (allopatric) showed no such significant difference. A mixed source of parasites (containing F1 hybrids) also showed no difference in infection between rare and common host genotypes. These results show that local adaptation results from parasite tracking of locally common host genotypes, and, as such, a necessary condition of the Red Queen hypothesis is met.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.