Abstract

While most fungi have the ability to reproduce sexually, multiple independent lineages have lost meiosis and developed parasexual cycles in its place. Emergence of parasexual cycles is particularly prominent in medically relevant fungi from the CUG paraphyletic group of Candida species. Since the discovery of parasex in C. albicans roughly two decades ago, it has served as the model for Candida species. Importantly, parasex in C. albicans retains hallmarks of meiosis including genetic recombination and chromosome segregation, making it a potential driver of genetic diversity. Furthermore, key meiotic genes play similar roles in C. albicans parasex and highlights parallels between these processes. Yet, the evolutionary role of parasex in Candida adaptation and the extent of resulting genotypic and phenotypic diversity remain as key knowledge gaps in this facultative reproductive program. Here, we present our current understanding of parasex, the mechanisms governing its regulation, and its relevance to Candida biology.

Highlights

  • Species survival depends on the generation of reproductive offspring that are capable of competing in their niche or expanding into new niches

  • Phosphate limitation either through phosphate starvation or mutations in the PHO pathway increases the mating efficiency of opaque cells, highlighting the myriad environmental conditions that are conducive to initiating the C. albicans parasexual cycle without requiring pheromone production or sensing (Zheng et al, 2020)

  • Even after mating was described in C. albicans, the lack of evidence for meiosis-like levels of recombination fueled the hypothesis that rare and cryptic parasex is not enough to confer the benefits of a traditional sexual cycle (Schmid et al, 2004)

Read more

Summary

Introduction

Species survival depends on the generation of reproductive offspring that are capable of competing in their niche or expanding into new niches. Mating products are capable of stably maintaining the resultant ploidy by propagating asexually or can be induced to undergo a disordered ploidy reduction called concerted chromosome loss (CCL) to yield recombinant and karyotypically diverse progeny (Forche et al, 2008; Smith and Hickman, 2020).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call