Abstract
Candida species exhibit a variety of ploidy states and modes of sexual reproduction. Most species possess the requisite genes for sexual reproduction, recombination, and meiosis, yet only a few have been reported to undergo a complete sexual cycle including mating and sporulation. Candida albicans, the most studied Candida species and a prevalent human fungal pathogen, completes its sexual cycle via a parasexual process of concerted chromosome loss rather than a conventional meiosis. In this study, we examine ploidy changes in Candida tropicalis, a closely related species to C. albicans that was recently revealed to undergo sexual mating. C. tropicalis diploid cells mate to form tetraploid cells, and we show that these can be induced to undergo chromosome loss to regenerate diploid forms by growth on sorbose medium. The diploid products are themselves mating competent, thereby establishing a parasexual cycle in this species for the first time. Extended incubation (>120 generations) of C. tropicalis tetraploid cells under rich culture conditions also resulted in instability of the tetraploid form and a gradual reduction in ploidy back to the diploid state. The fitness levels of C. tropicalis diploid and tetraploid cells were compared, and diploid cells exhibited increased fitness relative to tetraploid cells in vitro, despite diploid and tetraploid cells having similar doubling times. Collectively, these experiments demonstrate distinct pathways by which a parasexual cycle can occur in C. tropicalis and indicate that nonmeiotic mechanisms drive ploidy changes in this prevalent human pathogen.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.