Abstract

Crosses were performed between homokaryons of Agrocybe aegerita having the same allele at the A incompatibility gene but different B alleles. Heterokaryotic mycelia originating from crosses between two complementary auxotrophs were characterized by their instability on complete medium and extensive anastomosis between hyphae. Diploid mycelia were selected by plating oidia recovered from these heterokaryons onto minimal medium. These mycelia were characterized by the production of larger oidia than those of homokaryons, the release of a brown pigment when growing on complete medium and extensive hyphal anastomoses. Diploids retained the two B incompatibility functions of their homokaryotic parents and gave rise to a diploid/haploid dikaryon when crossed with a compatible homokaryon. Nearly 1% of the oidia recovered from heterokaryons were diploid. These nuclear fusion frequencies as well as the production of brown pigments enabled the identification of diploid strains on complete medium. In this way, crosses between wild prototrophic strains were successfully performed. Somatic recombination was induced following the treatment of diploid mycelia with haploidizing compounds. Selection based on the inability of mycelia to produce the brown pigments on complete medium led to selection of strains homoallelic at the B locus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call