Abstract
A Gram-stain-negative and rod-shaped bacterium, designated strain CY04T, was isolated from a sediment sample collected from the Yellow Sea. CY04T exhibited the highest 16S rRNA gene sequence similarity of 98.7 % to Zongyanglinia huanghaiensis CY05T, followed by the similarities of 98.6 %, 98.0 and 98.0 % to Zongyanglinia marina DSW4-44T, Parasedimentitalea marina W43T and Parasedimentitalea psychrophila QS115T respectively. Phylogenetic analysis based on 16S rRNA gene and phylogenomic analysis based on genome sequences revealed that CY04T formed a robust cluster with Z. huanghaiensis CY05T, Z. marina DSW4-44T, P. marina W43T and P. psychrophila QS115T. Calculated digital DNA-DNA hybridisation and average nucleotide identity values between CY04T and its closely related species were 22.2-23.7 % and 79.0-81.2 % respectively. Cells of CY04T were strictly aerobic, non-motile and positive for catalase, oxidase and denitrification. CY04T harboured a set of genes encoding the enzymes involved in denitrification. Growth occurred at 10-30 °C (optimum, 20 °C), at pH 6.5-9.5 (optimum, pH 8.0) and with 1-6 % (w/v) (optimum, 2.5 %,) NaCl. The major component of the fatty acids was summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c). The isoprenoid quinone was Q-10. Results of the phenotypic, chemotaxonomic and molecular study indicate that strain CY04T represents a novel species of the genus Parasedimentitalea, for which the name Parasedimentitalea denitrificans sp. nov. is proposed. The type strain is CY04T (=MCCC 1K08635T=KCTC 62199T). It is also proposed that Zongyanglinia huanghaiensis and Zongyanglinia marina should be reclassified as Parasedimentitalea huanghaiensis comb. nov. and Parasedimentitalea maritima nom. nov. An emended description of the genus Parasedimentitalea is also proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International journal of systematic and evolutionary microbiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.