Abstract

A novel Gram-stain-negative, aerobic, rod-shaped bacterium named T808T was isolated from an alpine soil in Qamdo, Tibet, PR China. Strain T808T grew at 5-30℃, pH 5.0-9.0 (optimum, 25℃ and pH 7.0-8.0) with 0-2% (w/v) NaCl (optimum, 0%). The 16S rRNA gene sequences of strain T808T showed the highest similarity with Pararhizobium herbae CCBAU83011T (98.8%), followed by Pararhizobium polonicum F5.1T (98.7%), Pararhizobium giardinii H152T (98.5%), Rhizobium gei ZFJT-2T (98.4%), and Pararhizobium antarcticum NAQVI59T (97.5%). The highestdigital DNA-DNA hybridization (dDDH), core-proteome average amino acid identity (cpAAI) and average nucleotide identity (ANI) values between strain T808T and related strains were estimated as 28.0%, 92.1% and 84.4%, respectively. Phylogenetic analysis based on 16S rRNA, core-proteome and whole-genome indicated that strain T808T belonged to the genus Pararhizobium. The genome size was 6.24 Mbp with genomic DNA G + C content of 60.1%. The major cellular fatty acids were Summed feature 8 (C18:1 ω7c or C18:1 ω6c), C16:0 and C19:0 cyclo ω8c. The polar lipids were diphosphatidyl glycerol, phosphatidyl glycerol, phosphatidyl ethanolamine, phosphatidyl choline and unidentified aminophospholipid. The isoprenoid quinone were ubiquinone-10 and ubiquinone-9. Based on phenotypic, phylogenetic, and genotypic data, strain T808T is considered to represent a novel species of the genus Pararhizobium, for which the name Pararhizobium qamdonense sp. nov. is proposed. The type strain is T808T (= JCM 36247T = CICC 25216T). According to phylogenetic coherence based on 16S rRNA, core-proteome and whole-genome, it is also proposed that the type strain Rhizobium gei Shi et al. 2016 should be reclassified as Pararhizobium gei comb. nov., the type strain is ZFJT-2T (= CCTCC AB 2013015T = KCTC 32301T = LMG 27603T).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call