Abstract
Paraquat (PQ) is a highly water-soluble, non-selective herbicide. Due to water pollution and lack of specific medicines, it is extremely harmful to humans and aquatic animals. Oxidative stress and apoptosis can affect the immune function of the body. However, the effects and mechanisms of PQ on the immune function, apoptosis and programmed necrosis on CIK cells are still unclear. Therefore, we constructed low (L, 50 μmol/L), medium (M, 100 μmol/L), and high (H, 150 μmol/L) dose models of PQ exposure on CIK cells. The expression of oxidative stress-related indexes (MDA, CAT, GSH-Px and SOD) and interrelated genes were examined by flow cytometry, qRT-PCR, and western blotting methods. Our data demonstrated that PQ treatment caused an increase in MDA content and the decreases in the activities of antioxidase and antioxidants (SOD, GSH-Px and CAT) on CIK cells (p < 0.05). We also discovered the PTEN/PI3K/AKT pathway was significantly activated in a dose dependent manner (p < 0.05). Furthermore, the proportion of programmed necrosis cells increased dramatically at PQ doses from 0 μmol/L to 150 μmol/L. Apoptosis and necrosis-related genes also showed dose-dependent changes (p < 0.05). Briefly, PQ exposure leads to apoptosis and programmed necrosis via the oxidative stress and PTEN/PI3K/AKT pathway, thereby causing immune dysfunction of CIK cells. This study enriches the toxic influences of PQ on the cells of aquatic organisms and provides a reference for comparative medicine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.