Abstract
It is shown that if a paranormal contraction T has no nontrivial invariant subspace, then it is a proper contraction. Moreover, the nonnegative operator Q = T/sup 2*/T/sup 2/ - 2T/sup */T + I also is a proper contraction. If a quasihyponormal contraction has no nontrivial invariant subspace then, in addition, its defect operator D is a proper contraction and its itself-commutator is a trace-class strict contraction. Furthermore, if one of Q or D is compact, then so is the other, and Q and D are strict ontraction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.