Abstract

We explore the optical birefringence of the nematic binary mixtures 6CB_{1-x}7CB_{x} (0 ≤ x ≤ 1) embedded into parallel-aligned nanochannels of mesoporous alumina and silica membranes for channel radii of 3.4 ≤ R ≤ 21.0 nm. The results are compared with the bulk behavior and analyzed with a Landau-de Gennes model. Depending on the channel radius the nematic ordering in the cylindrical nanochannels evolves either discontinuously (subcritical regime, nematic ordering field σ<1/2) or continuously (overcritical regime, σ>1/2), but in both cases with a characteristic paranematic precursor behavior. The strength of the ordering field, imposed by the channel walls, and the magnitude of quenched disorder varies linearly with the mole fraction x and scales inversely proportionally with R for channel radii larger than 4 nm. The critical pore radius, R_{c}, separating a continuous from a discontinuous paranematic-to-nematic evolution varies linearly with x and differs negligibly between the silica and alumina membranes. We find no hints of preferred adsorption of one species at the channels walls. By contrast, a linear variation of the nematic-to-paranematic transition point T_{PN} and of the nematic ordering field σ versus x suggests that the binary mixtures of cyanobiphenyls 6CB and 7CB keep their homogeneous bulk stoichiometry also in nanoconfinement, at least for channel diameters larger than ∼7 nm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.