Abstract

Replicon-particle-based vaccines combine the efficacy of live-attenuated vaccines with the safety of inactivated or subunit vaccines. Recently, we developed Rift Valley fever virus (RVFV) replicon particles, also known as nonspreading RVFV (NSR), and demonstrated that a single vaccination with these particles can confer sterile immunity in target animals. NSR particles can be produced by transfection of replicon cells, which stably maintain replicating RVFV S and L genome segments, with an expression plasmid encoding the RVFV glycoproteins, Gn and Gc, normally encoded by the M-genome segment. Here, we explored the possibility to produce NSR with the use of a helper virus. We show that replicon cells infected with a Newcastle disease virus expressing Gn and Gc (NDV-GnGc) were able to produce high levels of NSR particles. In addition, using reverse genetics and site-directed mutagenesis, we were able to create an NDV-GnGc variant that lacks the NDV fusion protein and contains two amino acid substitutions in, respectively, Gn and HN. The resulting virus uses a unique entry pathway that facilitates the efficient production of NSR in a one-component system. The novel system provides a promising alternative for transfection-based NSR production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.