Abstract

SUMMARY We present a mathematical framework and a new methodology for the parametrization of surface wave phase-speed models, based on traveltime data. Our method is neither purely local, like block-based approaches, nor is it purely global, like those based on spherical harmonic basis functions. Rather, it combines the well-known theory and practical utility of the spherical harmonics with the spatial localization properties of spline basis functions. We derive the theoretical foundations for the application of harmonic spherical splines to surface wave tomography and summarize the results of numerous numerical tests illustrating the performance of a practical inversion scheme based upon them. Our presentation is based on the notion of reproducing-kernel Hilbert spaces, which lends itself to the parametrization of fully 3-D tomographic earth models that include body waves as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.