Abstract

SummaryA parametrized reduced order modeling methodology for cracked two dimensional solids is presented, where the parameters correspond to geometric properties of the crack, such as location and size. The method follows the offline‐online paradigm, where in the offline, training phase, solutions are obtained for a set of parameter values, corresponding to specific crack configurations and a basis for a lower dimensional solution space is created. Then in the online phase, this basis is used to obtain solutions for configurations that do not lie in the training set. The use of the same basis for different crack geometries is rendered possible by defining a reference configuration and employing mesh morphing to map the reference to different target configurations. To enable the application to complex geometries, a mesh morphing technique is introduced, based on inverse distance weighting, which increases computational efficiency and allows for special treatment of boundaries. Applications in linear elastic fracture mechanics are considered, with the extended finite element method being used to represent discontinuous and asymptotic fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.