Abstract

The pairwise descreening approximation provides a rapid computational algorithm for the evaluation of solute shape effects on electrostatic contributions to solvation energies. In this article we show that solvation models based on this algorithm are useful for predicting free energies of solvation across a wide range of solute functionalities, and we present six new general parametrizations of aqueous free energies of solvation based on this approach. The first new model is based on SM2-type atomic surface tensions, the AM1 model for the solute, and Mulliken charges. The next two new models are based on SM5-type surface tensions, either the AM1 or the PM3 model for the solute, and Mulliken charges. The final three models are based on SM5-type atomic surface tensions and are parametrized using the AM1 or the PM3 model for the solute and CM1 charges. The parametrizations are based on experimental data for a set of 219 neutral solute molecules containing a wide range of organic functional groups and the ato...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call