Abstract
This paper proposes an automated parametric local model-order reduction scheme for the expedited design of microwave devices using the full-wave finite-element method (FEM). The approach proposed here results in parameterized reduced-order models (ROMs) that account for the geometry and material variation in the selected subregion of the structure. In each subregion, a parameter-dependent projection basis is generated by concatenating several local bases that correspond to different parameter values, yielding a small, dense ROM. The process is automated and uses an adaptive scheme guided by a local goal-oriented error estimator to select points in the parameter space at which a local basis needs to be computed. A two-stage basis compression technique is also proposed to remove the redundancy from the projection basis and yields compact macromodels. Numerical examples, including FE analysis of a fifth-order filter with seven geometric variables as parameters, demonstrate that the approach provides a significant reduction in computational time while preserving the accuracy of the simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Microwave Theory and Techniques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.