Abstract
Physics-based battery models are important tools in battery research, development, and control. To obtain useful information from the models, accurate parametrization is essential. A complex model structure and many unknown and hard-to-measure parameters make parametrization challenging. Furthermore, numerous applications require non-invasive parametrization relying on parameter estimation from measurements of current and voltage. Parametrization of physics-based battery models from input–output data is a growing research area with many recent publications. This paper aims to bridge the gap between researchers from different fields that work with battery model parametrization, since successful parametrization requires both knowledge of the underlying physical system as well as understanding of theory and concepts behind parameter estimation. The review encompasses sensitivity analyses, methods for parameter optimization, structural and practical identifiability analyses, design of experiments and methods for validation as well as the use of machine learning in parametrization. We highlight that not all model parameters can accurately be identified nor are all relevant for model performance. Nonetheless, no consensus on parameter importance could be shown. Local methods are commonly chosen because of their computational advantages. However, we find that the implications of local methods for analysis of non-linear models are often not sufficiently considered in reviewed literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.