Abstract

We apply a new parametrized version of Newton's iteration in order to compute (over any field F of constants) the solution, or at least-squares solution, to linear system Bx = v with an n × n Toeplitz or Toeplitz-like matrix B, as well as the determinant of B and the coefficients of its characteristic polynomial, det( λI − B), dramatically improving the processor efficiency of the known fast parallel algorithms. Our algorithms, together with some previously known and some recent results of [1–5], as well as with our new techniques for computing polynomial god's and lcm's, imply respective improvement of the known estimates for parallel arithmetic complexity of several fundamental computations with polynomials, and with both structured and general matrices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.