Abstract

Important progress has recently been made on the Orbital Motion Theory for cylindrical emissive probes immersed at rest in collisionless and Maxwellian plasmas. However, due to the computational cost of its numerical algorithm, only solutions for specific values of the physical parameters were found, thus preventing its direct application to the interpretation of experimental current–voltage characteristics ( curves). In this work, and thanks to an analytical analysis of a Jacobian matrix appearing in the algorithm, the computational cost was reduced by a factor in the order of , where is the number of grid points. This achievement, together with the implementation of parallel programming, allowed to construct a database with more than 18 000 curves for a broad range of physical parameters, including the emission level, the probe radius-to-Debye length, and the ion-to-electron temperature ratios. The boundaries in parameter space of the operational regimes of emissive probes, covering both orbital motion limited (OML) and space charge limited (SCL) transitions were computed. A novel OML/non-OML transition for emissive probes operating at low bias was found. The numerical results were used to propose useful analytical laws for the SCL boundary happening at negative bias, the reduction of the emitted electron current due to SCL effects, and the floating potential of emissive probes. The applications of the results to the modeling of low work function tethers and three experimental methods for measuring the plasma potential, i.e. the separation point, the inflection point, and the floating potential techniques, were discussed. The formation of an inverse sheath for strong emission was investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.