Abstract
Chemical equilibria computations, especially those with vanishing species in the aqueous phase, lead to nonlinear systems that are difficult to solve due to gradient blow up. Instead of the commonly used ad hoc treatments, we propose two reformulations of the single-phase chemical equilibrium problem which are in line with the spirit of preconditioning but whose actual aims are to guarantee a better stability of Newton's method. The first reformulation is a parametrization of the graph linking species mole fractions to their chemical potentials. The second is based on an augmented system where this relationship is relaxed for the iterates by means of a Cartesian representation. We theoretically prove the local quadratic convergence of Newton's method for both reformulations. From a numerical point of view, we demonstrate that the two techniques are accurate, allowing to compute equilibria with chemical species having very low concentrations. Moreover, the robustness of our methods combined with a globalization strategy is superior to that of the literature.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.