Abstract

We report use of nonlinear tip-sample interactions to parametrically convert the frequency components of periodic tip-sample interaction forces to frequencies where they can be resonantly detected. One flexural mode of a cantilever is used for tapping-mode imaging and another flexural mode is used for detection of forces converted in presence of an externally injected mechanical oscillation at the difference frequency of the detecting mode and a harmonic of the tapping mode. Material contrast in attractive and repulsive regimes are demonstrated on samples with polymethyl methacrylate patterns and with deoxyribonucleic acid strands on silicon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.