Abstract

We propose a scheme to achieve a tunable nonreciprocal magnon laser with parametric amplification in a hybrid cavity optomagnonical system, which consists a yttrium iron garnet (YIG) sphere and a spinning resonator. We demonstrate the control of magnon laser can be enhanced via parametric amplification, which make easier and more convenient to control the magnon laser. Moreover, we analyze and evaluate the effects of pump light input direction and amplification amplitude on the magnon gain and laser threshold power. The results indicate that we can obtian a higher magnon gain and a broader range of threshold power of the magnon laser. In our scheme both the nonreciprocity and magnon gain of the magnon laser can be increased significantly. Our proposal provides a way to obtain a novel nonreciprocal magnon laser and offers new possibilities for both nonreciprocal optics and spin-electronics applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call