Abstract

Whispering gallery mode resonators (WGMR) have attracted a great interest in the last decade. WGMR have been fabricated in different geometries, solid and hollow, spherical, toroidal, and bottled shaped. Hollow spherical WGMR or microbubble resonators (MBR) are the last arrived in the family of resonators. The approach used for their fabrication is based on surface tension driven plastic deformation on a pressurized capillary, similar to glassblowing. Using such technique we are able to fabricate large surface area and thin spherical shells with high quality factor (Q). MBR are efficient phoxonic cavities that can sustain both optical photons and acoustic phonons. It has been demonstrated that MBR can be used to study Turing comb patterns (Kerr modulation) and Stimulated Brillouin Scattering (SBS). Radiation pressure is another mechanism that also leads to excitation of acoustic phonons with lower frequencies, in the range of hundreds of kHz to tens of MHz in the case of silica MBR. The frequency of such oscillations occurs very close to the mechanical eigenfrequencies of the cavity. We have studied the temporal behavior of the cavity, the coexistence and the suppression of the oscillation while generating Turing comb patterns. The observed phenomenology can be explained by the geometrical characteristics of a MBR. MBRs are spheroidal WGM resonators with quite dense spectral characteristics. The total dispersion of MBR is anomalous and large, as expected for very large MBR. Thus, Kerr comb formation is allowed for all MBR used in this work.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.