Abstract

Process variations play an increasingly important role on the success of analog circuits. State-of-the-art analog circuits are based on complex architectures and contain many hierarchical layers and parameters. Knowledge of the parameter variances and their contribution patterns is crucial for a successful design process. This information is valuable to find solutions for many problems in design, design automation, testing, and fault tolerance. In this article, we present a hierarchical variance analysis methodology for multistage analog circuits. Starting from the process/layout level, we derive implicit hierarchical relations and extract the sensitivity information analytically. We make use of previously computed values whenever possible so as to reduce computational time. The proposed approach is particularly geared for the domain of design and test automation, where multiple runs on slightly different circuits are necessary. Experimental results indicate that the proposed method provides both accuracy and computational efficiency when compared with prior approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.