Abstract
SummaryIn this paper, a proper generalized decomposition (PGD) approach is employed for uncertainty quantification purposes. The neutron diffusion equation with external sources, a diffusion‐reaction problem, is used as the parametric model. The uncertainty parameters include the zone‐wise constant material diffusion and reaction coefficients as well as the source strengths, yielding a large uncertain space in highly heterogeneous geometries. The PGD solution, parameterized in all uncertain variables, can then be used to compute mean, variance, and more generally probability distributions of various quantities of interest. In addition to parameterized properties, parameterized geometrical variations of three‐dimensional models are also considered in this paper. To achieve and analyze a parametric PGD solution, algorithms are developed to decompose the model's parametric space and semianalytically integrate solutions for evaluating statistical moments. Varying dimensional problems are evaluated to showcase PGD's ability to solve high‐dimensional problems and analyze its convergence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.