Abstract

Rothermel's wildland surface fire model is a popular model used in wildland fire management. The original model has a large number of parameters, making uncertainty quantification challenging. In this paper, we use variance-based global sensitivity analysis to reduce the number of model parameters, and apply randomised quasi-Monte Carlo methods to quantify parametric uncertainties for the reduced model. The Monte Carlo estimator used in these calculations is based on a control variate approach applied to the sensitivity derivative enhanced sampling. The chaparral fuel model, selected from Rothermel's 11 original fuel models, is studied as an example. We obtain numerical results that improve the crude Monte Carlo sampling by factors as high as three orders of magnitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.