Abstract

We develop a highly efficient quasi-phase-matched adhered ridge waveguide (QPM-ARW) in LiNbO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> as a nonlinear material, and demonstrate tunable wavelength conversion without spectral inversion (SI) and parametric tunable dispersion compensation for a single-mode fiber (SMF) link. The QPM-ARW module with a second harmonic generation efficiency of 700 %/W achieves tunable wavelength conversion with a wavelength-tuning range of at least 25 nm through cascaded sum- and difference-frequency generation (SFG-DFG) process in which the signal and pumps are located symmetrically around the phase matching wavelength. The power penalty of the wavelength conversion is less than 0.6 dB for 43-Gb/s nonreturn-to-zero on-off-keying (NRZ-OOK) signals. We then apply the tunable wavelength conversion without SI to the parametric tunable dispersion compensation scheme, and achieve successful optical tunable dispersion compensation in 43-Gb/s NRZ-OOK transmissions over 53.2-km SMF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.