Abstract

Tolerance analysis is a difficult task and an optimum tolerance allocation for individual parts is done to reduce the process error. This paper articulates the effect of changes in the link lengths due to manufacturing tolerance variation on the target path, assembly cost and joint torques of an R-R-R (three revolute joints) configuration planar three link robot manipulator. Genetic Algorithm (GA) and Elitist Non-dominated Sorting Genetic Algorithm-II (NSGA-II) are utilized to find optimum link lengths for the three link planar manipulator to minimize the errors. The analyses are further extended to identify the effect due to the three types of tolerances (fine, medium and coarse tolerances) on link lengths using C program codes and the results obtained from evolutionary algorithms are compared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.