Abstract

This paper entails a detailed numerical and parametric study on the lateral behavior of piles in foundation designs. Single-piles are one of the major components of a foundation as they act as the primary component in the transmission of the weights above the structure into the ground for stability to be attained. For this reason, a detailed study on the influence generated on the p-y curves is mandatory to create a numerically valid model for use in the process of foundation design without much ado. Modeling procedure under consideration employs the use of the finite difference method (FMD) embedded in FLAC2D. FDM is used to implement a solution to the coded input for example soil and pile element parameters. The model validation process done in this paper involves the variation of some of the critical parameters such as the variation on the type of soil in the area under consideration. Next, modification of the elastic modulus of the given soil as a check on the cohesiveness, change on the loading velocity at the top of the pile, a variation of the pile material stiffness and the difference of the pile eccentricity. The results obtained from the p-y curves generated from the parameters undergo sifting through for any effects on the ultimate loading capacity of the pile to the allowed design loading limits upon full structural installation. This variation is necessary for the approval of the validity of the model in engineering design. The parametric study from this study shows that the structure is of functional strength and a tolerable factor of safety.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.