Abstract

The free vibrational characteristics of die springs are examined by Riccati transfer matrix method in this study. The warping deformation of spring’s cross section, as a new design factor, is incorporated into the differential equation of motion. Numerical simulations show that the warping deformation is a significant role of the behavior of natural frequencies of die springs and should be considered carefully. Approximately 40% of the errors may occur if warping is neglected. The change laws of warping effect with the parameter variations of springs are also explored, including the height-to-width ratio of the cross section, the cylinder diameter, the helix pitch angle, and the number of coils. The warping effect exhibits the most remarkable changes with the variation in the height-to-width ratio of the cross section. However, this effect is not fairly sensitive to the changes in other parameters, and it is particularly significant when the cross section is relatively narrow regardless of the changes in other parameters. This study evidently answers the key scientific question: “under what working condition should the warping effect be considered or ignored?” The analysis results can be used to guide spring designers in engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.