Abstract
The aim of this rigorous parametric study is to explore the influence of perforations on the local buckling behavior of square hollow sections (SHSs) possessing non-uniform wall thickness. A finite element procedure followed in the current study has been first validated against existing test results documented for the local buckling behavior of the perforated SHS with uniform web and flange segment thickness under axial compression. The linear elastic eigenvalue buckling and elastoplastic buckling analyses have been implemented using the Abaqus engineering finite element code. The verification of the numerical procedure has been achieved by favorably comparing the finite element results with the existing test results in terms of the first local buckling mode shape and load-end shortening curves of the perforated SHS with uniform wall thickness. . The verified numerical procedure has been applied to the problem of finding the perforation effect on the local buckling response of the SHS with non-uniform thickness. Finite element analyses have been performed for four various web width-to-perforation diameter ratios ranging from 0.3 to 0.9. Finite element analysis results have revealed that the presence of perforations does not influence the local buckling mode shape of the SHS but considerably affects the critical local buckling loads. The results have put forth that increasing perforation diameter leads to a more pronounced and drastic decrease in the critical local buckling load. The outcomes of the study have also shown that the critical post-buckling load of the SHS with non-uniform wall thickness is less susceptible to perforations compared to the SHS with uniform wall thickness. The results obtained in the context of this parametric study have been made available to practical engineering for use in actual design of the perforated SHSs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Innovative Engineering and Natural Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.