Abstract

Rupture disk corrosion test (RDCT) method has been recently developed for real-time measurement of initiation of stress corrosion cracking (SCC) in a high-temperature water. This work presents a parametric study on the stress distribution of a thin disk specimen of RDCT to consider the fixture shape and friction using finite element analysis (FEA). The FEA results showed a dome-shaped deformation of the specimen. From the stress analysis as a function of friction coefficient, it was suggested that the maximum stress was applied around the dome-edge, which was invariant with change to the friction coefficient. This indicates that friction between the fixture and the specimen has little effect on stress distribution. On the other hand, the stress analysis as a function of a rounded-corner radius (Rc) revealed the location at which the maximum stress was applied shifted from the dome edge to the dome center as Rc increased. From SCC initiation tests using the RDCT apparatus in a primary water environment, it was found that SCC initiates at the dome edge when Rc is 0.5 mm, while SCC initiates near the disk center when Rc is 2.0 mm. This experimental result is in good agreement with the results of FEA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.