Abstract

Abstract Turbochargers are commonly used in automotive engines to increase the internal combustion engine performance during off-design operating conditions. When used, the widest operating range for the turbocharger is desired, which is limited on the compressor side by the choke condition and the surge phenomenon. The ported shroud technology is used to extend the operable working range of the compressor, by permitting flow disturbances that block the blade passage to escape and stream back through the shroud cavity to the compressor inlet. The impact of this technology, on a speed-line, at near optimal operating condition, near choke operating condition and near surge operating condition is investigated. The ported shroud (PS) self-recirculating casing treatment is widely used to delay the onset of surge by enhancing the aerodynamic stability of the turbocharger compressor. While the ported shroud design delays surge, it usually comes with a small penalty in efficiency. This research involves designing a single-stage centrifugal compressor for the given specifications, considering the application of an automotive turbocharger. The ported shroud was then introduced in the centrifugal compressor. The performance characteristics were obtained, both at the design and at off-design conditions, both with and without the ported shroud. The performance was compared at various off-design operating speed lines. The entire study, from designing the compressor to optimizing the ported shroud configuration, was performed using the commercial AxSTREAM® software platform. Parametric studies were performed to study the effect of ported shroud axial location along the blade axial length on the operating range and performance. The baseline design, without the ported shroud (P0), and the final geometry with it for all PS inlet axial locations (P1 to P5) were analysed using a commercial CFD package and the results were compared with those from the streamline solver.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call