Abstract

This study is done to discuss nonlinear static behavior for cable-stayed bridges, hence develop a set of consistent design as well as a feasibility study of long span cable-stayed bridges over Nile River. In order to accomplish this goal, a thorough investigation of important key design parameters to determine the behavior of cable-stayed bridge and identify any gaps in current knowledge is done to be filled in order to enable the formation of a consistent set of design recommendations. Three span cable stayed bridge has been analyzed, the effects of the variation of different key design parameters: cross section of cables, cable layout either fan or harp pattern, pylon height to span ratio and mechanical properties of deck and pylon on the straining action of the bridge elements are investigated. The loads on the cable stayed bridge are a symmetrical load such as the own weight of all structural elements and live loads. The results related to the major factors to choose the ratio between the bending stiffness of a deck and axial stiffness of the cable to reduce bending moments and deflections in the deck and pylon are presented and discussed. Finally, some conclusions related to the cable stayed bridge’s analysis/design are drawn.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.