Abstract

AbstractFor integral abutment bridge (IAB) design, there is no consensus on the preferable orientation of the piles supporting the abutment, although variations can affect overall bridge behavior and forces in the piles. This paper details a parametric study of steel girder IABs that used finite-element models to compare the effects of pile orientation on bridges of various lengths and skews. For this study, the bridge lengths investigated were 15.2 m (50 ft), 30.5 m (100 ft), and 45.7 m (150 ft) with skew angles of 0, 15, 30, and 45°. H-pile orientation of webs parallel and perpendicular to the abutment centerline were investigated and compared. The results apply to the thermal response of the models and report abutment and pile displacements, pile weak-axis and strong-axis bending moments, and ratios of maximum bending moments to yield moments. Results show that there is not one optimal pile orientation; rather, optimal orientation depends on other factors. Beyond the effects of length and skew angle, c...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.