Abstract
One of the most popular topics in the field of engineering is natural convection due to its wide applications. Hence, the analysis of entropy production helps the researcher to design more efficient thermal systems. At this end, the present works tries to provide a comprehensive view on hydrodynamic, thermal and entropy production attitudes of free convection in a simplified thermal storage. The thermal storage is filled with alumina-water nanofluid. To solve the governing equations, the lattice Boltzmann method is employed and combined with Immersed Boundary Method. The immersed boundary method is applied to perform an accurate and effective numerical simulation of thermal flow in the curved boundaries. In the result section, the streamlines and temperature field are depicted. In addition, the contributions of entropy production are extracted graphically. The numerical results are gathered for various influential factors such as Rayleigh number (Ra in range of 103 to 106), alumina nanoparticle concentration 0≤wt%≤1 and aspect ratio of fins (AR in range of 0.200 to 0.588).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.